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The phase error and isotropy propeniies of various finie-difference
schamas on grids consisting of regular triangles are compared with
similor schemes on squore grids. The comparisons are based on a
Fourier analysis of semidiscrete solutions to the two-dimensional linear
convection equation. The finite-difference schemes presented an the
triangular grid include a second-aorder method, a compact fourth-arder
method, and a medified compact method designed to extend the
accurate wave number range of the numerical approximation. All of the
schemes considered are centered and hence nondissipative. In each
case. the finite-difference scheme on the triangular grid reduces the
anisotrapy of the phase error in comparison with a simitar scheme on
the square grid. @ 1993 Academic Press, Ing.

L. INTRODUCTION

Discretization of a partial differential equation introduces
phase error and thus numerical dispersion. In multidimen-
sions, the phase error has a dependence on the direction
of propagation and consequently is anisotropic. The
anisotropy of numerical phase error has been studied by
numerous authors, including Bamberger ef af. [1], Lele
[2], Mullen and Belytschko [3], Trefethen [4], and
Vichnevetsky and Bowles {67, Mullen and Belytschko [3]
studied various semidiscretizations of the two-dimensional
wave cquation on quadrilateral and triangular meshes.
Several different  triangular  mesh  configurations  were
considered. A triangular mesh consisting of regular triangles
was shown to produce the lowest anisotropy of the phase
Error.

The purpose of this paper is te compare the phase error
resulting from several finite-difference semidiscretizations of
the two-dimensional linear convection equation on square
and triangular meshes. All of the semidiscretizations com-
pared are centered and hence are nondissipative. The finite-
difference schemes studied on the triangular mesh include a
second-order method, a compact fourth-order method, and
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an extended-wave-number method. An extended-wave- -
number method maximizes the range of wave numbers for
which the scheme achicves some specified accuracy rather
than the order of accuracy of the scheme, This concept,
originally suggested by Vichnevetsky and De Schutter [7],
was explored in detail by Lele [2] for one-dimensional and
square meshes.

Section 2 reviews some well-known concepts relating to
numerical phase error in one dimension. Isotropy errors on
a square mesh are reviewed in Section 3. Section 4 presents
the finite-difference schemes and the associated isotropy
errors on a triangular mesh. A discussion and conclusions
are given in Sections 5 and 6.

2. WAVE PROPAGATION ERRORS IN ONE DIMENSION

This section is a brief review of some well-known
materjal. It is included to clarify terminology and concepts
used in the following sections.

Exact solution. Consider the one-dimensional linear
convection equation given by

au - oU
__+(-—= s 2.'
ir dx (21)
where U(x, 1) 1s a scalar propagating with phase speed ¢.
A solution initiated by a harmonic function with wave
number i is

Ulx, 1) = u(t) e™, (2.2)
where (1) satisfies the ordinary differential equation
du
— = —CKU. 2.
o fexku (2.3)
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Solving for u(¢) and inserting the result in Eq. (2.2), one
finds

U(x, 1)=u(0) e =", (24)

where the frequency w and wave number x are related by

the phase speed, ¢, through the relation

W = CK. (2.5)

The group velocity, the velocity at which waves transport
energy, is given by

¢, = dw/dx. {2.6)

If the phase speed is a constant, independent of the wave

number «, we see from Eq. (2.6) that the group velocity is

equal to the phase speed, and the system is said to be
nondispersive.

Semidiscrete methods. Next consider some numerical
semidiscrete approximations of Eq. (2.1). This terminology
is used to describe the approach in which only the spatial
derivatives are discretized, and the governing system is
reduced to a set of ordinary differential equations.

Explicit Schemes

For a simple example, use the second-order-accurate
three-point centered difference scheme on an equispaced
mesh with spacing L. (In this case L=Ax, but later it
represents the length of the side of a square or a regular
triangle.}

1

O U) =5 (Upps = Uy, (27)

where x,=/jL and U,=U(x,, ty=ufr)e*V. Using
Eq. (2.7) for the space derivative in Eq. {2.1), with the initial
condition imposed by Eq. (2.2), we are led to the ordinary
differential equation given by

%— —icK l:sm}ill:L)] u= —ic*ku= —ick*u. (2.8)
The term [sin{xL)/{xL)] represents the error caused by the
space differencing. We can regard it as an error in wave
number or as an error in phase speed. We define the terms
c* as numerical phase speed, x* as numerical (or modified)
wave number, w* = re* =cic* as numerical frequency, and
erY ohase = (€ — ¢*)/c as the numerical phase speed error. In
our example,

o* = ECZ sin(kL) (2.9)
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and the numerical group velocity is

dw*®
dx

cf = =c cos{kL). (2.10)

The latter is the speed at which the numerical solution will
propagate a wave packet [4, 5].

For later generalizations we express the numerical phase
speed as

c*:if*(id,) (2.11)

and note that the form of f*(xL) depends on the choice of
differencing scheme.

Padeé (or Implicit or Compact or Hermite) Schemes

For a simple Padé example, consider the fourth-order-
accurate three-point central difference scheme

3
(6. U)_ +4(0, U);+ (6, U);,, :Z (Vs = U;2y)
(2.12)

Following the above development, we are led again to
Eq. (2.11), where in this case

o . B3sin(xL)
/ (KL)#-2+cos(rcL)' (2.13)

Extended Wave Number Schemes

The Fourier analysis of finite difference approximations
to first and second space derivatives is a widely used techni-
que for comparing schemes. In these comparisons we can
think of x as the input wave number and «* = f*/L, see
Eq. (2.11), as the output or modified wave number. This
provides a way to extend our classification of methods
beyond the concept of “order of accuracy,” which gives
information only about the low wave number resolution, to
include the entire wave number range available in a mesh of
given size (the maximum available accuracy from a differen-
cing scheme is no error at all for the entire range 0 < kL < =,
and is provided by a spectral method).

The idea of using some of the coefficients in the develop-
ment of a finite difference scheme for extending its accurate
wave number range is contained in Vichnevetsky and De
Schutter {77 and highly developed by Lele [2], who refers
to these methods as “spectral-like schemes.” For example,
using Lele’s notation, we can approximate a first derivative
by the scheme

a(d.U);—1+ (6, U);+a(d,U); 4,

a

b
:E(Uj+2_ Uj—2)+2L

(U= U, 1) (214)
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FIG. 1. Modified wave numbers from Eq.(2.14) ( , fourth-
order, a = }; .., sixth-order, a = }; ——, extended scheme, « = ).

where a=2(x + 2)/3 and & = (42 — 1)/3, and we can provide
a method that is fourth-order accurate for all . With =1
we have the classical Padé fourth-order scheme, and with
a=1} the scheme is sixth-order accurate. A plot of the
modified wave number versus the input wave number is
given in Fig. 1 for 2 =1, 1, and 5. We see that for a small
allowable error in approximating a wave number, o = 75 is
the best even though its formal accuracy is not the highest.
In Section 4 we examine this concept further in two
dimensions.

3. ISOTROPY ERRORS ON A SQUARE MESH

Fourier analysis. In two (and three) dimensions the
numerical phase speed and numerical dispersion errors can
vary with the angle that the propagation vector makes with
the mesh. This is referred to as isotropy error. Isotropy
errors are well documented for finite difference schemes
developed for square meshes [1-4, 67, but we briefly review
them here to contrast with the methods developed for
triangular meshes that are discussed in the next section.

The partial differential equation governing a simple
two-dimensional plane wave convecting the scalar quantity
U(x, y, t) with speed c along a straight line making an angle
8 with respect to the x-axis is

i ol
a—q+60059?—+csin65=0.

ot dx (3.1)

If we choose for the initial condition a harmonic function
with wave number «,

U(x, y, 1) = uft) ™, (3.2)
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where
E=xcos+ ysin b, {3.3)
the exact solution is
Ulx, y, t)=wu(r) e™e ), (34)

In Section 2 we reviewed a way to Fourier-analyze the
numerical phase speed error for difference schemes in one
dimension. A similar anaiysis applies for two dimensional
schemes on square meshes which use the same one-
dimensional method in both directions. It is not difficult to
show that in two dimensions,

c*(kL, 0) = é (cos B *(xcL cos ) + sin 8 *(x L sin 8)),
(3.5)

where f*(x L) is the one-dimensional numerical phase speed
function defined in Eq. (2.11).

In two dimensions the wave number is a vector given for

a plane wave by
K = fK cos(@) + jix sin(§), (3.6)
where [ and J are unit vectors along the x and y directions,
respectively. The group velocity is now
c,=V, w* (3.7)
where V_ denotes the gradient with respect to k [4]. Note
that, although the numerical phase velocity vector is aligned

in the correct direction, the numerical group velocity vector
is not.

Explicit Five-Point Cross

Using the explicit three-point centered scheme to
approximate both spatial derivatives in Eq. (3.1) {giving a
five-point cross stencil in two dimensions), we find the
numerical phase speed to be

o*= K‘—L (cos B[sin(xL cos 0)] + sin A[sin(xL sin 8)]).

(3.8)

Figure 2 (shown also in [2,6]) is a plot of Eq. (3.8),
showing ¢*/c as a function of 8 for /L =2, 3, 4, 8, where the
wave length 4 equals 2r/x, This figure illustrates the lack of
isotropy that occurs with the use of square meshes. Clearly
the preferred direction of propagation is 8 =45°, while the
largest error occurs along the lines at 0° and 90°. One can
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FIG. 2. Polar plot of the ratio of numerical phase speed to true phase
speed for the explicit second-order five-point cross scheme on a square
mesh.

show from Eq. (3.8) that the leading term in the Taylor
series expansion for the phase speed error is

€T phace = kL7 (c0s* B + sin® 8), (3.9)

By this measure, even for acceptable accuracies, the error at
f =0° and 90° is twice the error at 45°.

Explicit Nine-Poinr Cross
For the fourth-order explicit nine-point cross, one finds
the leading term in the phase speed error expansion to be

BIT phase ¥ 35 KL% (cOS® 8 +sin® B). {3.10)

The error at 0° and 90° is now four times the error at 45°.

Padé Five-Point Cross
For the Padé five-point cross the leading term in the error
in phase speed is

EIT phase * Tag (K L) (cOs® 0 + sin® 0). (3.11)

Although the truncation error is i of that found for the

explicit nine-point cross, the dependence on 8 is identical.

Explicit Nine-Point Square

A second-order method can also be found using a
nine-point square stencil. The resulting method, studied in

581/108/2-8
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Refs. [4, 6], has for the leading term in the phase speed
error,

EIT phase ¥ £ K L[ (1 —3f)(cos* § +sin’ 8) + 347, (3.12)

where § is a free parameter. The standard explicit five-point
cross is obtained by setting f = 0. Note that when § = §, the
method is, to lowest order, isotropic. Unfortunately,
however, by comparing these results with those in Eq. (3.9),
we see that this improved isotropy has been achieved by
increasing the error at 6 = 45° without reducing the error at
1= 0° or 90°. In other words, we have improved isotropy at
accurate wave numbers, but we have done so by making the
error in all directions equal to the wors: error in the
anisotropic case. In the next section we show that we can
achieve better results with fewer points by using a mesh
consisting of regular triangles, so we do not pursue this
approach further.

4. ISOTROPY ERRORS ON A MESH OF
REGULAR TRIANGLES

In this section we present finite-difference schemes for
the two-dimensional plane wave equation {3.1) on a grid
composed of regular triangles. with sides of length L. The
numbering system for the triangular grid is shown in Fig. 3.
Three schemes are presented; ail use the points numbered 0
through 6 in the figure. The first is an explicit method, the
second is a Padé method, and the third is a modified Padé
methed designed to extend the wave number range of the
numerical approximation.

Explicit, second-order methiod. The coefficients multi-
plying the dependent variables at the numbered points in
Fig. 3 are found such that the approximation is second
order. Even under this constraint there remains a free
parameter. The value of this parameter is chosen by making
the phase speed error isotropic to lowest order. The following
scheme emerges:

1 1
(5xU)():_(U3_U6)+E(U2+ Us—U,—Us)

3L
/i (4.1)
{5}.U)O=E(U1+U2—U4—U5).
1 2
6 3
5 4

FIG. 3. Numbering system for the triangular mesh,
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FIG. 4. Polar plot of the ratic of numerical phase speed to true phase
speed for the explicit second-order scheme on the triangular mesh,

From this
2c \/5 kL sin @
* _ Y- -
c 3xLC088[COS( 2 )

X sin (E;;O—SQ) + sin(kL cos 9):]

in @
+ —2— £ sin @ l:cos (KL cos 9) sin (\/5 L sin )]
ﬁ kL 2 2

(4.2)

This result for c¢*/c is plotted in Fig. 4 for /L =2, 3, 4, 8.
When the error is very large (at /L =2, for example), the
preferred direction is obvious and occurs along lines
separated by 60°, starting at the x-axis. The scheme is nearly
isotropic for values of A/L greater than three and the leading
term in the phase speed error is

EXT ase  (KL)?/8. (4.3)

This should be compared with the result for the explicit
nine-point square scheme with § = 1 given in Eq. (3.12).

Padé fourth-order scheme. A compact fourth-order
scheme using the points shown in Fig. 3 is given by

6
4
6(6. U+ 3. (3, UL-=E (Us— Us)
i=1

2
+E(U1+ Us— U —Us) (4.4)

&
6(5.VU)0+ Z (5_vU)i=2_§(U1 + Uz— U4_ Us)

i=1

In this case the coefficients were chosen to make the method
fourth-order accurate. Again this constraint still permitted a
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FI1G. 5. Polar plot of the ratio of numerical phase speed to true phase
speed for the compact fourth-order scheme on the triangular mesh.

free parameter, and again this parameter was chosen to
minimize the dependence of the error on 8. The resulting
numerical phase speed is given by

12c¥

(4 cos({xL cos 8)/2) cos((\/j kL sin 9)/2))’
+2cos(kLcos )+ 6 (4.5)

c* =

where c¢¥ is the numerical phase speed of the second-order
explicit scheme given by Eq. (4.2). The results for ¢*/c are
shown in Fig. 5. They are similar in form to those in Fig. 4,
but the magnitude of the error is reduced. The leading term
in the phase speed error is now

(kL) 6 4 cinl "
errphmz—ga(Z cos® @+ 15 cos® B sin® ¢4 3 sin® 4).

(4.6)
The ratio of maximum to minimum error is 1.5.

Extended wave number scheme (Padé). We now
generalize the Padé scheme just presented, exploring the
extended wave number concept described in Section 2. The
scheme

ﬁ 6
(1=B)3.Uko+ ¢ 2 (.U,

=€1£ [2(Us = Ug)+ (Uy + Us— Uy — Us)
4.7)
B &
(1=B)3, U)o+ 2 X (3,U),

i=1

3
=—‘6£(U1+ Uy—Us—Us)
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FIG. 6. Ratio of numerical phase speed 10 true phase speed for the extended wave number scheme on the triangular mesh with § =0, 0.50, 0.55, 0.58;

(a) 6=0°, (b) @ = 30°.

is at least second-order accurate for ali §. The explicit
second-order scheme, Eq. (4.1), is found by setting §=0,
and the compact fourth-order scheme, Eq. (4.4), is found by
setting f = 1. The numerical phase speed is given by

P
* . Ca

B ((ﬁ/6)[4 cos({xL cos 8)/2) cos((\/§ kL sin B)/Z])’
+2cos(klcos )] +(1—F))

(4.8)

where ¢¥ is again the numerical phase speed given by
Eq. (4.2). This formula is plotted for various f at 8=0°,
where the method is most accurate, Fig. 6a, and at £ = 30°,
where the method is least accurate, Fig. 6b, Figure 7 shows
a polar plot of the numerical phase speed for § =0.55. The
leading term in the truncation error is

(kL)

€IT phase = (1 —28) T

(4.9)

] . »
-1 -05 0 0.5 1

FIG. 7. Polar plot of the ratio of numerical phase speed to true phase
speed for the extended wave number scheme on the triangular mesh with
B =055

To second-order the method is isotropic. In this case
sacrificing the fourth-order accuracy not only extended the
useful wave number range, but it also improved the isotropy
about the mean.

5. DISCUSSION OF RESULTS

We compare the phase error and isotropy properties of
finite difference schemes constructed on square grids with
those constructed on triangular grids. The comparisons are
based on a Fourier analysis of semidiscrete solutions to the
linear convection equation #,+ ¢ -Vu=0. All of the exam-
ples considered are based on centered schemes and no atten-
tion is paid to the effect of boundary conditions. Thus there
is no mechanism to produce dissipation and the numerical
errors are all related to the phase speed, wave number, and
frequency. There are three measures of error that are
considered:

1. The conventional order of accuracy based on a
Taylor series expansion in terms of the mesh characteristic
length,

2. The range of wave numbers a scheme can
approximate and stay within some given error bound.

3. The dependency of the above two errors on the angie
the wave makes with the mesh, that is, isotropy error.

Some of our results are summarized in Tables I and 11,
which compare the lowest order truncation term of the
seven differencing schemes we have analyzed. Only three of

TABLEI

Summary of Results for Square Mesh

Scheme on square mesh Phase speed error to lowest order

Explicit, 5-point cross
Explicit, 9-point cross
Explicit, 9-point square
Padé, 5-point cross

£#(rL)? (cos* 8 +sin® 8)
+(KL)* (cos® 8 +sin® 0)
Ly

m(x L) {cos® B +sin® )
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TABLEII

Summary of Results for Mesh of Regular Triangles

Scheme on
triangular mesh

Phase speed error
to lowest order

Explicit, 7-point HxL)?
Padé, 7-point s L)* (2 cos® 6+ 15 cos® 6 5in® 0 + 3 sin® @)
Extended Padé, 7-point g5{xL)?

these are fourth-order accurate, the explicit nine-point cross
and the Padé five-point cross on the square mesh, and the
Padé seven-point cluster on the triangular mesh. Not one of
these is isotropic. A comparison of the 8-dependence of the
two Padé schemes is shown in Fig. 8, one for the square
mesh and one for the triangular. By using the trianguiar,
rather than the square mesh, the ratio of the maximum to
minimum error is reduced from 4 to 1.5, and the maximum
error is reduced by a factor of about 2. Both the isotropy
and the maximum error are significantly improved by the
choice of triangular mesh.

Three of the schemes presented in the tables are isotropic
in the lowest order truncation term, the explicit nine-point
scheme on the square mesh, and both the explicit seven-
peint cluster and the extended Padé scheme on the tri-
angular mesh. Of the two explicit methods, the seven-point
ctuster has less error than the nine-point square for fewer
points. The two isotropic triangular schemes are compared
in Fig. 9, where the superiority of the extended Padé scheme
is clearly evident over a wide range of wave numbers. Also
shown in the figure are the maximum and minimum values
of the modified wave numbers produced by the simple
explicit five-point cross on a square mesh. Its anisotropy
and the superiority of the seven-point triangular cluster are
obvious.

0.01 —

square mesh R
0.008 - wiangular mesh oo
0.006 ~
0.004
0.002 -
0 : 1 [
t] 1 2 !
B in radians

FIG. 8. Coelflicient of the leading term of the phase speed error for the
compact fourth-order schemes on the square and triangular meshes.
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xL

FIG. 9. Bounds of modified wave number for the explicit second-order
five-point cross scheme on the square mesh ( }, the second-order
explicit scheme on the triangular mesh (-}, and the extended wave
number scheme on the triangular mesh (——).

6. CONCLUSIONS

The phase error and isotropy properties of various finite-
difference schemes on grids consisting of regular triangles
have been compared with similar schemes on square grids.
The comparisons are based on a Fourier analysis of semi-
discrete solutions to the two-dimensional linear convection
equation. The finite-difference schemes presented on the
triangular grid include a second-order method, a compact
fourth-order method, and a modified compact method
designed to extend the accurate wave number range of the
numerical approximation. All of the schemes considered are
centered and hence nondissipative. The results can be
summarized as follows:

1. Based on the leading term of a Taylor series expan-
sion of the phase speed error, the maximum error resulting
from the explicit second-order scheme on the square grid is
twice the minimum error while on the triangular mesh the
error is isotropic.

2. For the fourth-order compact schemes, the ratio of
the maximum to minimum error is 4 on the square grid and
1.5 for the triangular grid.

3. Tolowest order, the extended-wave-number schemes
have the same isotropy properties as the corresponding
explicit second-order schemes.
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In each case, the finite-difference scheme on the triangular
grid reduces the anisotropy of the phase error in com-
parison with a similar scheme on the square grid.
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